Analysis Featured

Lenders Bet On Artificial Intelligence for Credit Scoring

Banks have to struggle with a lot of challenges – from issuing credit to operational risks, and technological troubles to good old fashion fraud. In addition to the risks of yesteryear, modern banks face falling long-term rates, growing fintech competition, and low profitability. In this challenging environment, savvy modern banks focus more of their attention to mitigating risks.

Chief among these challenges are low-performing loan portfolios, which are a constant thorn in the side of lenders. For example, European non-performing loans stand above €1 trillion with more than one third of banks having NPL ratios above 10% (ECB, 2017).

This minefield of factors has driven lenders to seek out new ways to increase profits and cut funding costs in order to stay competitive.

Artificial Intelligence in Fintech: Will it take over?

AI is a powerful tool for banks, thanks to its ability to harness vast quantities of data to learn more about customer patterns and behaviors”, says Steve Ellis, head of the innovation group at Wells Fargo.

As powerful as artificial intelligence (AI) is, traditional banking is still heavily reliant on statistical methods that were developed over half a century ago. Lenders determine creditworthiness based on 20+ data points, which leave otherwise worthy customers behind.

Modern machine learning (ML) makes it possible to go much deeper when analyzing data, and allows lenders to extract valuable insights from available data patterns.

According to a McKinsey report, a number of European banks have already replaced the antiquated statistical-modeling approach with machine-learning techniques. The results speak for themselves: a 10% increase in the sale of new products, 20% savings in capital expenditures, and a 20% decline in churn.

Source: thefinancialbrand.com

The data doesn’t lie: Lenders are betting on AI. Evidence of this modern trend can be seen in numerous ‘banks and fintech collaborations’ and AI-based software releases:

  • JPMorgan Chase pioneered a Contract Intelligence platform designed to “analyze legal documents and extract important data points.”
  • American MobileBank deploys AI software to lend to thin-file millennials.
  • Canadian TD Bank uses Layer 6’s AI engine for scoring and cybersecurity.
  • Deutsche Bank came out with new AI-based equities to predict their pricing and volume more accurately.
  • Wells Fargo employs its own AI team to provide more personalized services and strengthen digital offerings.
  • Bank of America Merrill Lynch implements HighRadius’ AI solution to speed up receivables reconciliation for their large business clients.

Logistic regression is no longer the de facto standard

Nine times out of 10, logistic regression is used to build scoring models and solve classification issues. Before it can take over and provide predictive results, there’s an important step of preliminary analysis and data quality control that must be taken. If the dataset contains:

  • imperfect and missing values, outliers and unstructured data;
  • numerical and categorical values (age, income vs marital status, education);
  • raw data that doesn’t fit strict parameters(data with fractions or decimals, etc.)

data analysts will spend days (if not weeks) just to preprocess the data before it can be assessed. Cutting corners and ignoring such data may lead to the loss of valuable insight and incorrect predictions.

How modern AI/ML methods build better risk models

Today, lenders have the ability to collect more data than ever about their clients. In addition to traditional socio-demographic data, this may include transactional data, records from credit bureaus, social media, Google Analytics, as well as other non-traditional sources.

Processing and interpreting this data so that it can be used to issue loans to worthy credit seekers is where modern ML/AI methods give banks the edge they need.

Machine learning techniques like gradient boosting, random forest, or neural networks can better find hidden dependencies in a dataset, which helps to gain more accurate predictions. This assists banks in determining how collected parameters in a dataset should be weighed to predict whether borrowers will consistently repay their loans on time.

This is made possible by data signals, which define significant parameters that affect the power of a scoring model. Depending on the type of business, geography, target audience, and data authenticity, significant parameters may differ. Modern ML can determine which data points contain the desired signal.

Traditional data sources like credit bureaus still remain an important part of the process and provide the data that contain the above-mentioned signal. Unfortunately, they do not cover noteworthy market segments such as millennials, self-employed entrepreneurs, small business owners, immigrants, or the unbanked.

The team at GiniMachine carried out pilot projects to build accurate scoring models with minimal data points and without access to an applicant’s credit history. Some of the most promising and predictive parameters included the applicant’s industry and occupation, the size of their company, the total years they’d been in business, the size of their family, and data from social networks like their overall activity, as well as the quantity and quality of their connections.

The team at GiniMachine has proven that it is possible to capitalize on information about borrowers that is collected from alternative sources to accurately and efficiently assess borrower’s credibility and make effective lending decisions.

Modern ML methods can build more accurate risk models because of their capacity to:

  1. use built-in ‘raw’ data pre-processing tools
  2. find hidden dependencies of arbitrary complexity
  3. harness unstructured, big data, and data from alternative sources

The financial world, and lending businesses in particular, have seen major changes throughout the last few years. Using ML and AI in concert with traditional practices is the way forward for banks that want to remain competitive in the modern world. It’s clear that making good loans to the people of the future requires a futuristic helping hand.

Author:

Dmitry Dolgorukov is a CEO and co-founder of GiniMachine & HES, a technology entrepreneur, and an investor with over 15 years of executive experience in software development and fintech. In 2018, Dmitry was ranked as one of the top 200 Fintech leaders in Europe that contribute to the industry as influencers through action.

 

About the author

Allen Taylor

Add Comment

Click here to post a comment

Your email address will not be published. Required fields are marked *

Testimonials

default image

"Your daily letter is great!" , Ram , Founder and CEO, PeerIQ

default image

"Hi George - just want to tell you that you are doing a great work with Lending Times;-) Brgds, Kasper" , Kasper, Partner and Co-founder at Dansk Faktura Børs A/S

default image

"I've been following your newsletter for some time now and have been very impressed with the content." Charlie,Co-Founder | Bolstr

default image

"Hey George, I must say I really enjoy your site. It has inspired me to do some changes at our platform and we are the biggest consumer lender in Sweden." , Ludwig, CEO @ Savelend Sweden AB

default image

"Your daily email is very useful. It gives quick update on what's going in the market. Thank you very much for all that info." Yann Murciano, Head of Base Metals Trading at Morgan Stanley

Our daily p2p news digest

Daily News Summary Digest Sent Daily To Your Inbox